DATA & IMAGE MODELS

CS 448B | Fall 2025

MANEESH AGRAWALA

1

The big picture

task

questions, goals, assumptions

data

physical data type conceptual data type

domain

metadata semantics conventions

mapping

visual encoding

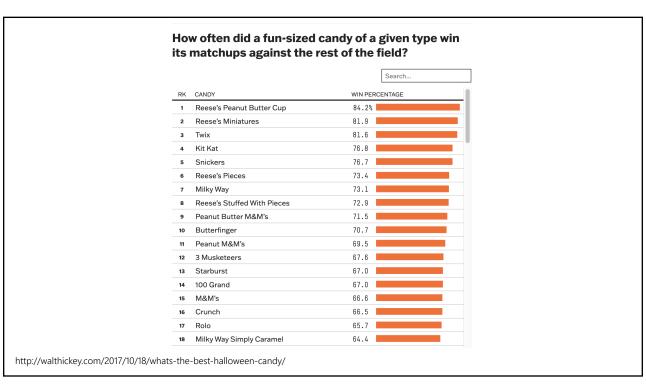
processing algorithms

image

graphical marks visual attrs/channels

Learning Objectives

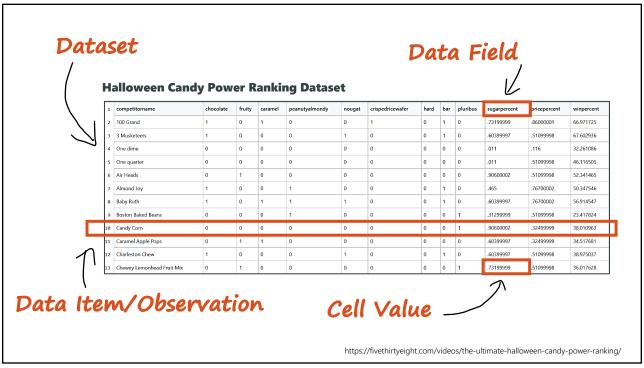
TODAY


- 1. Identify *properties* of data and images
- 2. Decide how to encode data using visual attributes/channels
- 3. Define concepts of *expressiveness* and *effectiveness*
- 4. Develop *automated chart design* algorithm

8

DATA

q


DATA TABLE

Halloween Candy Power Ranking Dataset

1	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
2	100 Grand	1	0	1	0	0	1	0	1	0	.73199999	.86000001	66.971725
3	3 Musketeers	1	0	0	0	1	0	0	1	0	.60399997	.51099998	67.602936
4	One dime	0	0	0	0	0	0	0	0	0	.011	.116	32.261086
5	One quarter	0	0	0	0	0	0	0	0	0	.011	.51099998	46.116505
6	Air Heads	0	1	0	0	0	0	0	0	0	.90600002	.51099998	52.341465
7	Almond Joy	1	0	0	1	0	0	0	1	0	.465	.76700002	50.347546
8	Baby Ruth	1	0	1	1	1	0	0	1	0	.60399997	.76700002	56.914547
9	Boston Baked Beans	0	0	0	1	0	0	0	0	1	.31299999	.51099998	23.417824
10	Candy Com	0	0	0	0	0	0	0	0	1	.90600002	.32499999	38.010963
11	Caramel Apple Pops	0	1	1	0	0	0	0	0	0	.60399997	.32499999	34.517681
12	Charleston Chew	1	0	0	0	1	0	0	1	0	.60399997	.51099998	38.975037
13	Chewey Lemonhead Fruit Mix	0	1	0	0	0	0	0	0	1	.73199999	.51099998	36.017628

https://fivethirtyeight.com/videos/the-ultimate-halloween-candy-power-ranking/

12

DATA MODELS & CONCEPTUAL MODELS

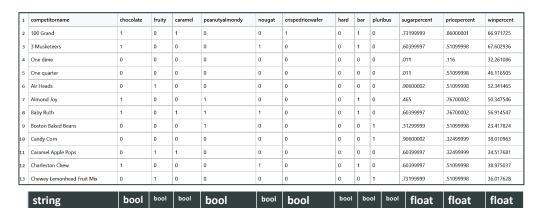
Data models are formal descriptions

Math: Sets with operations on them

Examples: integers with +, - and × operators reals/floats with +, -, × and ÷

Conceptual models are mental constructions

Include semantics and support reasoning


Examples (data vs. conceptual)

1D floats vs. temperature

3D tuple of floats vs. spatial location in 3D

15

DATA MODEL

How is data stored in the database?

CONCEPTUAL MODEL

Header Description

chocolate Does it contain chocolate?

fruity Is it fruit flavored?

caramel Is there caramel in the candy?

peanutalmondy Does it contain peanuts or almonds?

nougat Does it contain nougat?

crispedricewafer Does it contain crisped rice or cookies?

hard Is it a hard candy? bar Is it a candy bar?

pluribus Is it one of many candies in a bad?
sugarpercent The percentile of sugar (across dataset)
pricepercent The unit price percentile (across dataset)
winpercent The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

17

CONCEPTUAL MODEL

Header Description

chocolate Does it contain chocolate?

fruity Is it fruit flavored?

caramel Is there caramel in the candy?

peanutalmondy Does it contain peanuts or almonds?

nougat Does it contain nougat?

crispedricewafer Does it contain crisped rice or cookies?

hard Is it a hard candy? bar Is it a candy bar?

pluribus Is it one of many candies in a bad?

sugarpercent The percentile of sugar (across dataset)

pricepercent The unit price percentile (across dataset)

winpercent The overall win percentage in 269K contests

https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

Domain specific understanding of the data

Supports analysis and reasoning

DATA TYPES

N - Nominal (labels)

Fruits: Apples, oranges, ... Operations: =, ≠

O - Ordered

Quality of eggs: Grade AA, A, B Operations: =, \neq , <, >

Q - Interval (location of zero arbitrary)

Dates: Jan, 19, 2016; Loc.: (LAT 33.98, LON -118.45) Like a geometric point. Cannot compare directly Only differences (i.e. intervals) may be compared Operations =, \neq , <, >, -

Q - Ratio (location of zero fixed)

Physical measurement: Length, Mass, ... Counts and amounts Like a geometric vector, origin is meaningful Operations: =, \neq , <, >, -, \div

19

NOMINAL, ORDINAL, QUANTITATIVE

Header	Description	
competitorname	Name of candy	N
chocolate	Does it contain chocolate?	N (maybe O)
fruity	Is it fruit flavored?	N (maybe O)
caramel	Is there caramel in the candy?	N (maybe O)
peanutalmondy	Does it contain peanuts or almonds?	N (maybe O)
nougat	Does it contain nougat?	N (maybe O)
crispedricewafer	Does it contain crisped rice or cookies?	N (maybe O)
hard	Is it a hard candy?	N (maybe O)
bar	Is it a candy bar?	N (maybe O)
pluribus	Is it one of many candies in a bad?	N (maybe O)
sugarpercent	The percentile of sugar (across dataset)	Q-Ratio
pricepercent	The unit price percentile (across dataset)	Q-Ratio
winpercent	The overall win percentage in 269K contests	Q-Ratio

DATA TYPES

DIMENSIONS

Dimensions are often the **independent** variables

Dimensions contain qualitative values that describe the data item (such as names, dates, or geographical data)

MEASURES

Measures are often the **dependent** variables

Measures contain numeric, quantitative values that you can measure in the experiment. Measures can be aggregated (sum, count, average, std. deviation).

$\ \ $	1	competitorname	chocolate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent	winpercent
	2	100 Grand	1	0	1	0	0	1	0	1	0	.73199999	.86000001	66.971725
	3	3 Musketeers	1	0	0	0	1	0	0	1	0	.60399997	.51099998	67.602936
	4	One dime	0	0	0	0	0	0	0	0	0	.011	.116	32.261086

NOTE: Distinction is not strict. The same variable may be treated either way depending on the task

21

Header

competitorname

DIMENSION OR MEASURE

chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?

DescriptionName of candy

crispedricewafer Does it contain crisped rice or cookies?

hard Is it a hard candy?
bar Is it a candy bar?
pluribus Is it one of many candies in a bad?

sugarpercent
The percentile of sugar (across dataset)
pricepercent
The unit price percentile (across dataset)
winpercent
The overall win percentage in 269K contests

DIMENSION OR MEASURE

Header	Description			
competitorname	Name of candy			
chocolate	Does it contain chocolate?			
fruity	Is it fruit flavored?			
caramel	Is there caramel in the candy?			
peanutalmondy	Does it contain peanuts or almonds?			
nougat	Does it contain nougat?			
crispedricewafer	Does it contain crisped rice or cookies?			
hard	Is it a hard candy?			
bar	Is it a candy bar?			
pluribus	Is it one of many candies in a bad?			
sugarpercent	The percentile of sugar (across dataset)			
pricepercent	The unit price percentile (across dataset)			
winpercent	The overall win percentage in 269K contests			
https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking				

nttps://gitnub.com/fivetnirtyeignt/data/tree/master/candy-power-ranking

23

DIMENSION OR MEASURE

Header	Description
competitorname	Name of candy
chocolate	Does it contain chocolate?
fruity	Is it fruit flavored?
caramel	Is there caramel in the candy?
peanutalmondy	Does it contain peanuts or almonds?
nougat	Does it contain nougat?
crispedricewafer	Does it contain crisped rice or cookies?
hard	Is it a hard candy?
bar	Is it a candy bar?
pluribus	Is it one of many candies in a bad?
sugarpercent	The percentile of sugar (across dataset)
pricepercent	The unit price percentile (across dataset)
winpercent	The overall win percentage in 269K contests

U.S. CENSUS DATA

People Count: # of people in subgroup **Year:** 1850 – 2000 (every decade)

Age: 0 – 90+ **Sex:** Male, Female

Marital Status: Single, Married, Divorced, ...

2348 data points

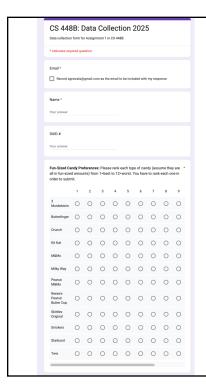
	А	В	С	D	E	
1	year	age	marst	sex	people	
2	1850	0	0	1	1483789	
3	1850	0	0	2	1450376	
4	1850	5	0	1	1411067	
5	1850	5	0	2	1359668	
6	1850	10	0	1	1260099	
7	1850	10	0	2	1216114	
8	1850	15	0	1	1077133	
9	1850	15	0	2	1110619	
10	1850	20	0	1	1017281	
11	1850	20	0	2	1003841	
12	1850	25	0	1	862547	
13	1850	25	0	2	799482	
14	1850	30	0	1	730638	
15	1850	30	0	2	639636	
16	1850	35	0	1	588487	
17	1850	35	0	2	505012	
18	1850	40	0	1	475911	
19	1850	40	0	2	428185	
20	1850	45	0	1	384211	
21	1850	45	0	2	341254	
22	1850	50	0	1	321343	
23	1850	50	0	2	286580	
24	1850	55	0	1	194080	
25	1850	55	0	2	187208	
26	1050	60		- 1	174076	

25

CENSUS N, O, Q

People Count: Q-Ratio
Year: Q-Interval
Age: Q-Ratio

Sex: N
Marital Status: N


	Α	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208
26	1050	60	0	4	174076

CENSUS DIM., MEAS.

People Count: Measure
Year: Dimension
Age: Measure
Sex: Measure
Marital Status: Measure

	Α	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080
25	1850	55	0	2	187208
26	1050	60	0	4	174076

27

Data: Halloween Candy Class Ranking

As part of the first lecture in this class you have been asked to fill out a form asking you to rank 12 types of candy commonly passed out on Halloween (fun-sized portions) from 1=best to 12=worst. We have aggregated and wrangled the data to produce a data table with the following information.

Number of records: 12

Data fields:

candy: Name of candy.

chocolate: Does it contain chocolate?

fruity: Is it fruit flavored?

caramel: Is there caramel in the candy?

peanutyalmondy: Does it contain peanuts, peanut butter or almonds?

nougat: Does it contain nougat?

crispedricewafer: Does it contain crisped rice, wafers or a cookie component?

hard: Is it hard candy?

bar: Is it a candy bar?

pluribus: Is it one of many candies in a bag or box?

 $\textbf{sugarpercent:} \ \text{The percentile of sugar it fall under within a larger data set of 86 candies}.$

pricepercent: The unit price percentile compared with a larger data set of 86 candies.

classwinpercent: The win percentage based on all the pairwise ranking match-ups in our class.

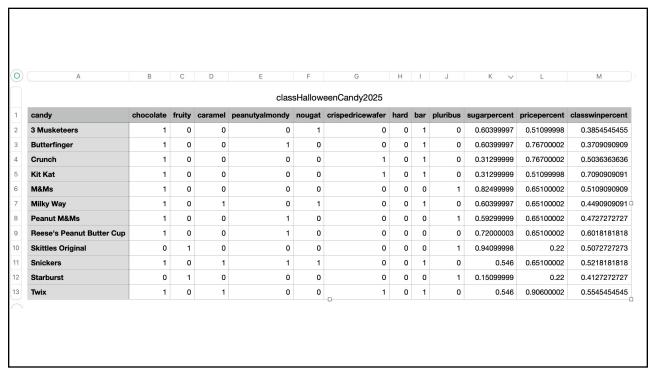
The data is available in csv format at (we've processed and wrangled it for you to convert ranks into classwinpercent for each candy): classHalloweenCandy2025.csv.

Note that all the fields other than **classwinpercent** are from a subset of **Walt Hickey's Halloween Candy** Article as available from **Kaggle**.

Computing classwinpercent

a. numrows: 50

b. numcandies: 12


c. num pairwise wins per candy, per row: numcandies – candyrank

d. num pairwise wins per candy: sum over rows (numcandies-candyrank)

e. total num pairwise test: numrows (numcandies -1) = 50*11

f. classwinpercent for each candy: d/e

29

DATA TABLES & TRANSFORMATIONS

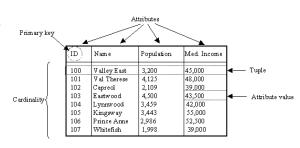
31

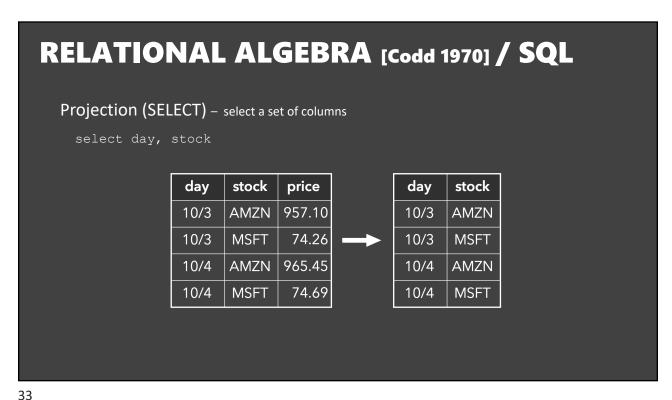
RELATIONAL ALGEBRA [Codd 1970] / SQL

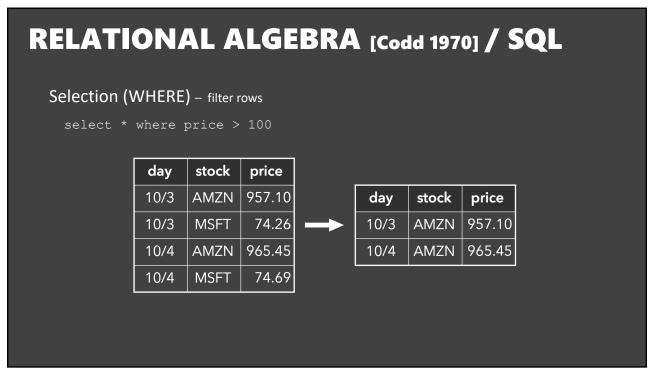
Operations on data tables: table(s) in, table out

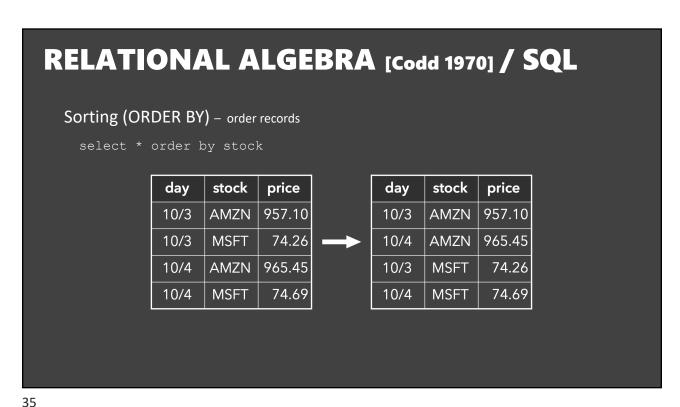
Projection (SELECT) – choose a set of columns

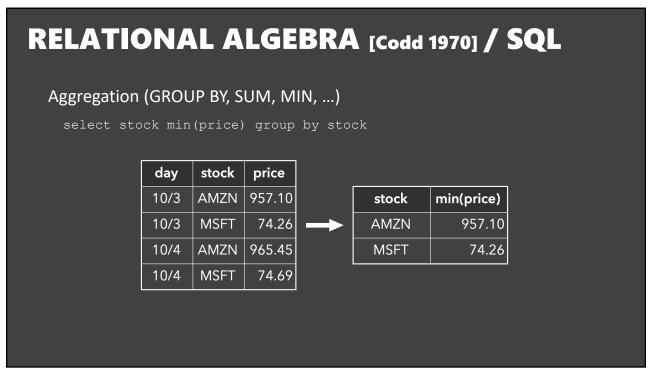
Selection (WHERE) - filter rows


Sorting (ORDER BY) - order rows


Aggregation (GROUP BY, SUM, MIN, ...)


partition rows into groups and summarize


Combination (JOIN, UNION, ...)


integrate data from multiple tables

RELATIONAL ALGEBRA [Codd 1970] / SQL

Combination (JOIN) multiple tables together

day	stock	price
10/3	AMZN	957.10
10/3	MSFT	74.26
10/4	AMZN	965.45
10/4	MSFT	74.69

day	stock	price	min
10/3	AMZN	957.10	957.10
10/3	MSFT	74.26	74.26
10/4	AMZN	965.45	957.10
10/4	MSFT	74.69	74.26

stock	min
AMZN	957.10
MSFT	74.26

select t.day,t.stock,t.price,a.min
from table as t, aggregate as a
where t.stock = a.stock

37

ANNOUNCEMENTS

CLASS PARTICIPATION REQUIREMENTS

Complete required readings and notebooks before class

Attend class and be a part of the in-class discussion

Post at least 1 discussion substantive comment/question per week

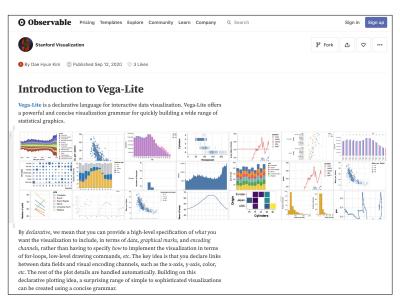
Due by 8pm the following Sunday 1 free pass for the quarter

Class home page

https://magrawala.github.io/cs448b-fa25/

45

READING/NOTEBOOK/LECTURE RESPONSES

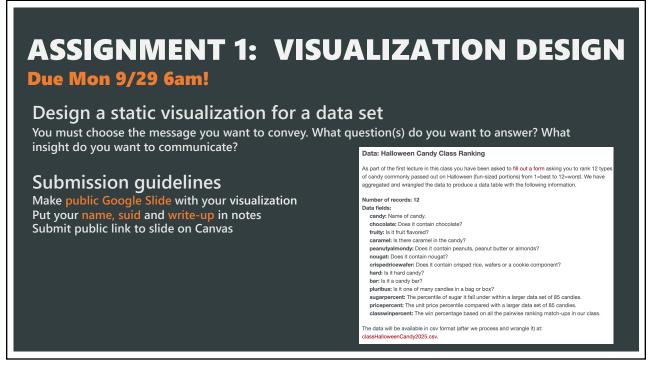

Good responses typically exhibit one or more

Critiques of arguments made in the papers/lectures **Analysis** of implications or future directions for ideas in readings/lectures **Insightful questions** about the readings/lectures

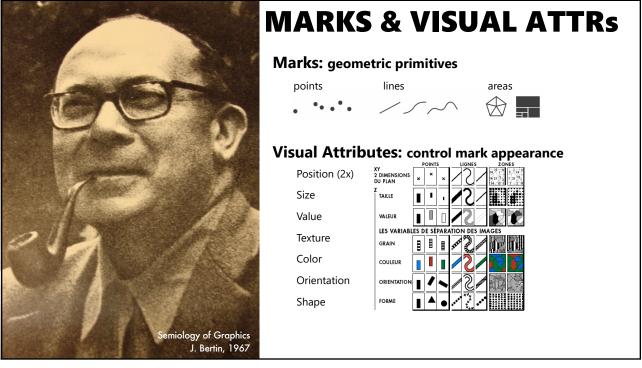
Responses should not be summaries

Should be substantive (1-2 paragraphs is typical)

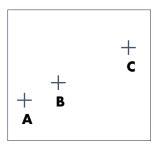
OBSERVABLE NOTEBOOKS / VEGA-LITE



Vega-Lite is a *declarative* API for programming visualizations


Do the exercises (fork notebook)

This Fri 9/26 10:30-11:30 We will run a Zoom session talking about the basics of Observable and how to do Data Wrangling using Tools in Observable.


47

CODING INFORMATION IN POSITION

- 1. A, B, C are distinguishable
- 2. Three points are colinear: B between A and C
- 3. BC is twice as long as AB
- .. Encode quantitative variables

"Resemblance, order and proportional are the three signfields in graphics." - Bertin

53

CODING INFORMATION IN COLOR

Value is perceived as ordered

:. Encode ordinal variables (O)

:. Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered

.: Encode nominal variables (N) using color

BERTIN'S "LEVELS OF ORGANIZATION"

Q

Position

Ν 0 Q

Size

Q Ν 0 0 Ν

0

Ν

Ν

Ν

Ν

Texture

Value

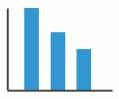
Color

Orientation

Shape

N Nominal

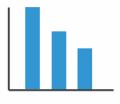
O Ordered


Q Quantitative

Note: $Q \subset O \subset N$

55

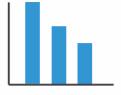
VISUAL ENCODING


ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect data → size (height)

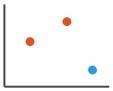
57

ENCODINGS: MAP DATA to MARK ATTRIBUTES

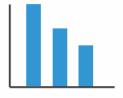


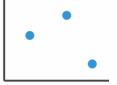
mark: rect data → size (height)

mark: points $data_1 \rightarrow x$ -pos $data_2 \rightarrow y$ -pos

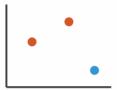

ENCODINGS: MAP DATA to MARK ATTRIBUTES

mark: rect data → size (height)


mark: points $data_1 \rightarrow x\text{-pos}$ $data_2 \rightarrow y\text{-pos}$

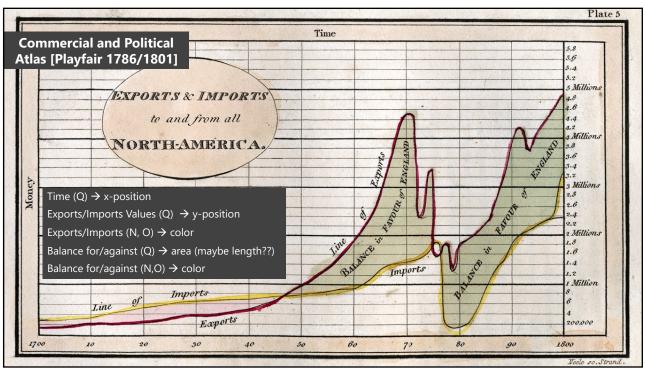

mark: points data₁ \rightarrow x-pos data₂ \rightarrow y-pos data₃ \rightarrow color

59

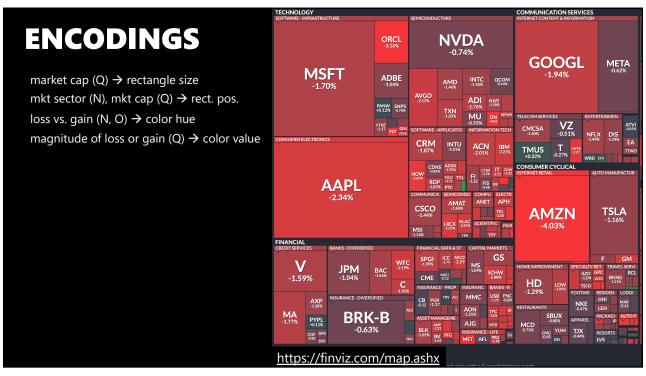

ENCODINGS: MAP DATA to MARK ATTRIBUTES

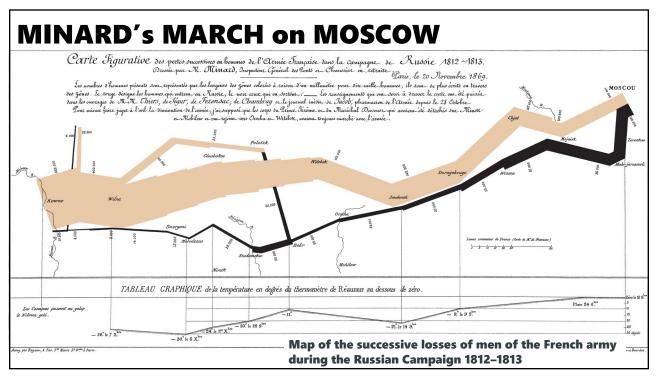
mark: rect
data → size (height)

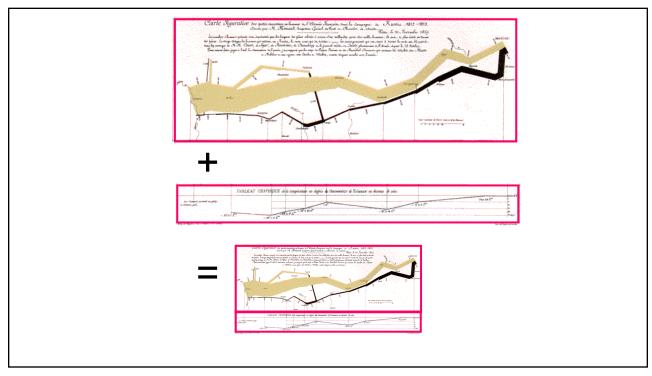

mark: points $data_1 \rightarrow x$ -pos $data_2 \rightarrow y$ -pos

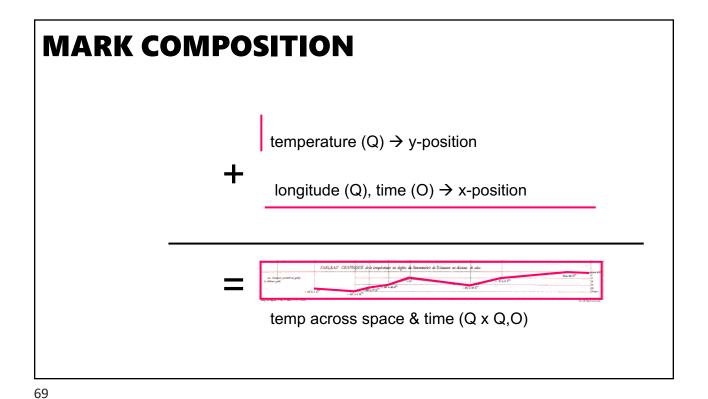


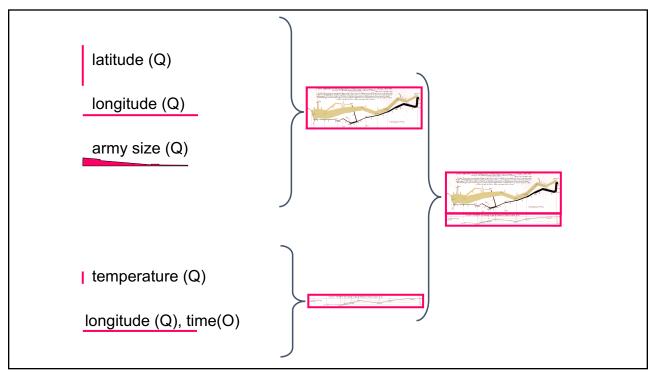
mark: points data₁ \rightarrow x-pos data₂ \rightarrow y-pos data₃ \rightarrow color

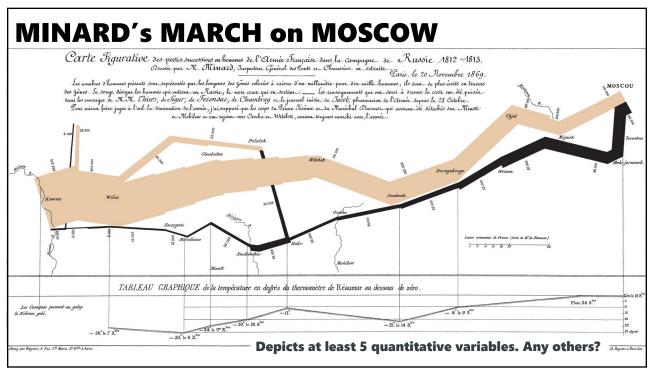



mark: points data₁ \rightarrow x-pos data₂ \rightarrow y-pos data₃ \rightarrow color data₄ \rightarrow size








Hatitude (Q) → y-position

+ longitude (Q) → x-position

+ army size (Q) → width

= army position (Q x Q) and army size (Q)

FORMALIZING DESIGN

73

COMBINATORICS OF ENCODINGS

Challenge:

Assume k visual attributes/channels and n data fields

Pick the best encoding from the exponential number of possibilities $(n+1)^k$

PRINCIPLES

Challenge

Assume k visual attributes/channels and n data fields Pick the best encoding from the exponential number of possibilities $(n+1)^k$

Principle of Consistency

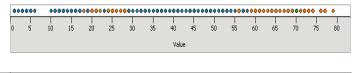
Properties of image (visual variables) should match properties of data

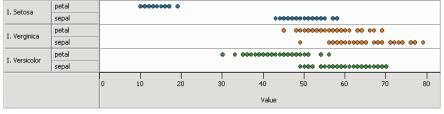
Principle of Importance Ordering

Encode most important information in the most effective way

75

EXPRESSIVENESS CRITERIA [Mackinlay 1986]


Expressiveness


A set of facts is expressible in a visual language if the sentences (i.e., the visualizations) in the language express *all* the facts in the set of data, and *only* the facts in the data.

CANNOT EXPRESS ALL THE FACTS

Horizontal dot plot

A one-to-many (1 \rightarrow N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

77

EXPRESSES FACTS NOT IN THE DATA

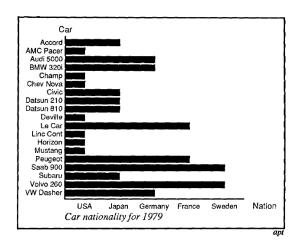
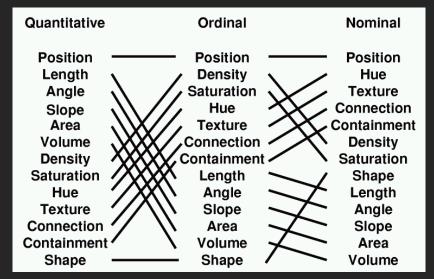


Fig. 11. Incorrect use of a bar chart for the *Nation* relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the *Nation* relation.

Length is interpreted as encoding a quantitative value

EFFECTIVENESS CRITERIA [Mackinlay 1986]


Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily *perceived* than the information in the other visualization.

Subject of the Perception Lecture

79

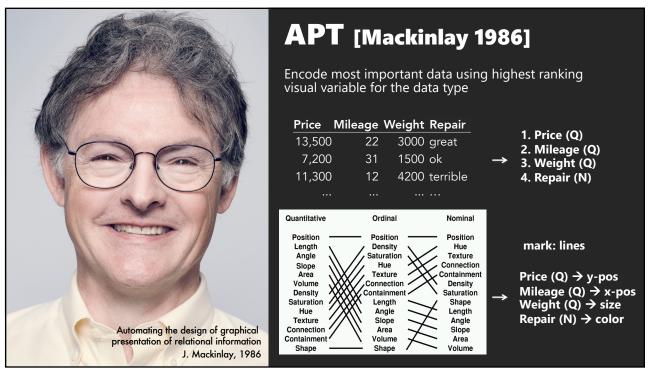
MACKINLAY'S RANKING

Conjectured effectiveness of encodings by data type

AUTOMATIC CHART DESIGN [Mackinlay 1986]

APT – "A Presentation Tool"

User formally specifies data model and type

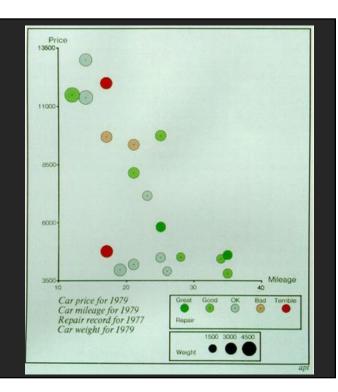

Input: list of data variables ordered by importance

APT searches over the design space

Tests expressiveness of each visual encoding (rule-based) Generates encodings that pass test Rank by perceptual effectiveness criteria

Outputs most effective visualization

81



Automatically generated chart for cars data

Cars Data

- 1. Price (Q)
- 2. Mileage (Q)
- 3. Weight (Q)
- 4. Repair (Q)

84

LIMITATIONS

Does not cover many visualization techniques

Networks, maps, diagrams Also, 3D, animation, illustration, ...

Does not consider interaction

Does not consider semantics or conventions

Assumes single visualization as output

SUMMARY

Formal specification

Data model: tidy data, N,O,Q types

Image model: marks, visual attributes/channels Encodings map data to mark attributes/channels

Choose *expressive* and *effective* encodings

Rule-based test of expressiveness Perceptual effectiveness rankings

86